643 research outputs found

    Evaluating cluster-level factor models with lavaan and M<i>plus</i>

    Get PDF
    Background: Researchers frequently use the responses of individuals in clusters to measure cluster-level constructs. Examples are the use of student evaluations to measure teaching quality, or the use of employee ratings of organizational climate. In earlier research, Stapleton and Johnson (2019) provided advice for measuring cluster-level constructs based on a simulation study with inadvertently confounded design factors. We extended their simulation study using both Mplus and lavaan to reveal how their conclusions were dependent on their study conditions. Methods: We generated data sets from the so-called configural model and the simultaneous shared-and-configural model, both with and without nonzero residual variances at the cluster level. We fitted models to these data sets using different maximum likelihood estimation algorithms. Results: Stapleton and Johnson’s results were highly contingent on their confounded design factors. Convergence rates could be very different across algorithms, depending on whether between-level residual variances were zero in the population or in the fitted model. We discovered a worrying convergence issue with the default settings in Mplus, resulting in seemingly converged solutions that are actually not. Rejection rates of the normal-theory test statistic were as expected, while rejection rates of the scaled test statistic were seriously inflated in several conditions. Conclusions: The defaults in Mplus carry specific risks that are easily checked but not well advertised. Our results also shine a different light on earlier advice on the use of measurement models for shared factors

    Flux Jumps Driven by a Pulsed Magnetic Field

    Full text link
    The understanding of flux jumps in the high temperature superconductors is of importance since the occurrence of these jumps may limit the perspectives of the practical use of these materials. In this work we present the experimental study of the role of heavy ion irradiation in stabilizing the HTSC against flux jumps by comparing un-irradiated and 7.5 10^10 Kr-ion/cm2 irradiated (YxTm1-x)Ba2Cu3O7 single crystals. Using pulsed field magnetization measurements, we have applied a broad range of field sweep rates from 0.1T/s up to 1800 T/s to investigate the behavior of the flux jumps. The observed flux jumps, which may be attributed to thermal instabilities, are incomplete and have different amplitudes. The flux jumps strongly depend on the magnetic field, on the magneto-thermal history of the sample, on the magnetic field sweep rate, on the critical current density jc, on the temperature and on the thermal contact with the bath in which the sample is immersed.Comment: 5 pages, PDF-fil

    Lagged and instantaneous dynamical influences related to brain structural connectivity

    Get PDF
    Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC).Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience. To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas) to be compared with FC connectivity matrices obtained by 3 different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM), linear correlations (C) and partial correlations (PC). We also considered the possibility of using lagged correlations in time series; so, we compared a lagged version of eSEM and Granger causality (GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C nor PC) provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.Comment: Accepted and published in Frontiers in Psychology in its current form. 27 pages, 1 table, 5 figures, 2 suppl. figure

    Confinement and Quantization Effects in Mesoscopic Superconducting Structures

    Full text link
    We have studied quantization and confinement effects in nanostructured superconductors. Three different types of nanostructured samples were investigated: individual structures (line, loop, dot), 1-dimensional (1D) clusters of loops and 2D clusters of antidots, and finally large lattices of antidots. Hereby, a crossover from individual elementary "plaquettes", via clusters, to huge arrays of these elements, is realized. The main idea of our study was to vary the boundary conditions for confinement of the superconducting condensate by taking samples of different topology and, through that, modifying the lowest Landau level E_LLL(H). Since the critical temperature versus applied magnetic field T_c(H) is, in fact, E_LLL(H) measured in temperature units, it is varied as well when the sample topology is changed through nanostructuring. We demonstrate that in all studied nanostructured superconductors the shape of the T_c(H) phase boundary is determined by the confinement topology in a unique way.Comment: 28 pages, 19 EPS figures, uses LaTeX's aipproc.sty, contribution to Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in Siena, Italy (8-20 september 1997

    The Dutch version of the Child Posttraumatic Cognitions Inventory:validation in a clinical sample and a school sample

    Get PDF
    With the inclusion of trauma-related cognitions in the DSM-5 criteria for posttraumatic stress disorder (PTSD), the assessment of these cognitions has become essential. Therefore, valid tools for the assessment of these cognitions are warranted

    Shapiro steps in a superconducting film with an antidot lattice

    Full text link
    Shapiro voltage steps at voltages V_n=nV_0 (n integer) have been observed in the voltage-current characteristics of a superconducting film with a square lattice of perforating microholes (antidots)in the presence of radiofrequent radiation. These equidistant steps appear at the second matching field H_2 when the flow of the interstitial vortex lattice in the periodic potential created by the antidots and the vortices trapped by them, is in phase with the applied rf frequency. Therefore, the observation of Shapiro steps clearly reveals the presence of mobile intersitial vortices in superconducting films with regular pinning arrays. The interstitial vortices, moved by the driving current, coexist with immobile vortices strongly pinned at the antidots.Comment: 6 pages text, 3 EPS figures, RevTeX, accepted for publication in PRB Rapid Communication

    Critical Currents, Pinning Forces and Irreversibility Fields in (YxTml-x)Ba2Cu3O7 Single Crystals with Columnar Defects in Fields up to 50 T

    Full text link
    We have studied the influence of columnar defects, created by heavy-ion (Kr) irradiation with doses up to 6 10^11 Kr-ions/cm2, on the superconducting critical parameters of single crystalline (YxTm1-x)Ba2Cu3O7. Magnetisation measurements in pulsed fields up to 50 T in the temperature range 4.2 - 90 K revealed that: (i) in fields up to T the critical current Jc(H,T) is considerably enhanced and (ii) down to temperatures T ~ 40 K the irreversibility field Hirr(T) is strongly increased. The field range and magnitude of the Jc(H,T) and Hirr(T) enhancement increase with increasing irradiation dose. To interpret these observations, an effective matching field was defined. Moreover, introducing columnar defects also changes the pinning force fp qualitatively. Due to stronger pinning of flux lines by the amorphous defects, the superconducting critical parameters largely exceed those associated with the defect structures in the unirradiated as-grown material: Jc,irrad(77 K, 5 T) ^3 10* Jc,ref(77 K, 5 T).Comment: 11 pages, all PDF, contribution to Physica
    corecore